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Derivation of the Tully–Fisher Law: Doubts About
the Necessity and Existence of Halo Dark Matter
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For disk galaxies the fourth power of the circular velocity v4
c of stars around the

core of the galaxy is proportional to the luminosity L, v4
c } L (Tully–Fisher law).

Since L is proportional to the mass M of the galaxy, it follows that v4
c } M.

Newtonian mechanics, however, yields v2
c 5 GM/r for a circular motion. In order

to rectify this big difference, astronomers assume the existence of dark matter.
We derive the equation of motion of a star moving in the central field of a galaxy
and show that, for a circular motion, it yields a term of the form v4

c } GMc/t,
where G is Newton’s gravitational constant, c is the speed of light, and t is the
Hubble time. This puts in doubt the existence of halo dark matter for galaxies.

1. INTRODUCTION

The universe is observed through electromagnetic waves. From the stars
the waves are visible, from hot plasmas they are X-rays, from the hyperfine
transition in hydrogen they are radio waves, and from the cosmic background
radiation they are microwaves.

Not all matter in the universe, however, emits detectable radiation.
Examples of this are black holes and zero-mass neutrinos. The difference
between the detectable mass and the total mass that should be according to
the laws of gravity is ascribed to the so-called dark matter, whose existence
is inferred only from its gravitational interaction.

The visible parts of the galaxies are composed mainly of stars which
do not satisfy Newton’s mechanics and thus are hypothesized to be surrounded
by extended halos of dark matter which may be a factor of 30 or more in
both mass and size. The existence of the planet Neptune was predicted from
the unexpected residuals in the motion of Uranus.
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A negative example, on the other hand, is the precession of the planet
Murcury’s perihelion. A hypothetical planet or a ring of matter inside Mur-
cury’s orbit was hypothesized to exist in order to explain the anomaly. No
planet or material ring was observed. As is well known, the anomaly was
resolved by Einstein’s general relativity theory [1]. This is a reminder that
much of the assumed missing matter might be explained by new theories.

In this paper we show that much of the unexplained observations can
be satisfactorily described. More precisely, we prove that the Tully–Fisher
law is included in the equations of motion obtained.

2. THE TULLY–FISHER LAW

Astronomical observations show that for disk galaxies the fourth power
of the circular velocity of stars moving around the core of the galaxy, v4

c, is
proportional to the total luminosity L of the galaxy to an accuracy of more
than two orders of magnitude in L, namely v4

c } L. Since L is proportional
to the mass M of the galaxy, one obtains v4

c } M. This is known as the
Tully–Fisher law [2]. There is no dependence on the distance of the star
from the center of the galaxy as Newton’s law v2

c 5 GM/r requires for circu-
lar motion.

In order to rectify this deviation from Newton’s laws, astronomers
assume the existence of halos around the galaxy which are filled with dark
matter and arranged in such a way as to satisfy the Tully–Fisher law for
each particular situation.

It is well known that Newton’s second law also follows from Einstein’s
general relativity theory in the lowest approximation in v/c, where v is a
characteristic velocity and c the speed of light. For this reason we exclude
the possibility of modifying Newton’s second law of motion such as by
adding to it a term which takes care of the anomaly [3, 4]. Any arbitrary
modification of Newton’s second law is therefore spurious even if it yields
results that fit observations quite well.

3. THE HUBBLE LAW

The Hubble law asserts that faraway galaxies recede from each other
at velocities proportional to their relative distances, v 5 H0R, with R 5 (x,
y, z). H0 is a universal proportionality constant (at each cosmic time). Obvi-
ously the Hubble law can be written as (t 5 H21

0 )

t2v2 2 (x2 1 y2 1 x 2) 5 0 (1)

and thus, when gravity is negligible, cosmology can be formulated as a
special relativity with a new Lorentz-like transformation [5–9].
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Gravitation, however, does not permit global linear relations like equa-
tion (1) and the latter has to be adapted to curved space. To this end one has
to modify equation (1) to a differential form and to adjust it to curved space.
The generalization of equation (1) is, accordingly,

ds2 5 g8mn dxm dxn 5 0 (2)

with x0 5 tv. Since the universe expands radially (it is assumed to be
homogeneous and isotropic), it is convenient to use spherical coordinates
xk 5 (R, u, f) and thus du 5 df 5 0. Equation (2) reduces to

dR
dv

5 t !g800

g811

(3)

This is Hubble’s law taking into account gravitation, and hence dilation
and curvature. When gravity is negligible, g800 ' g811 ' 1, thus dR/dv 5 t,
and by integration, R 5 tv or v 5 H0R when the initial conditions are
chosen appropriately.

4. CONSTRAINTS ON MOTION OF STARS

A star moving around the galaxy experiences the expansion of the
universe. This is a constraint on the dynamical system that should be taken
into account, and without which the theory is invalid.

The expansion of the universe causes an increase in the distance between
the star and the center of the galaxy. But when this distance increases, the
circular velocity changes accordingly. This constraint on the dynamical system
should be taken into account along with the centrifugal formula v2

c 5 GM/r.
In this paper we derive the extra relation and show that it yields a term

of the form v4
c } M.

5. EQUATIONS OF MOTION

In Einstein’s general relativity theory the equations of motion follow
from the vanishing of the covariant divergence of the energy-momentum
tensor. This is a result of the restricted Bianchi identities. The equations
obtained are usually geodesic equations. By means of a successive approxima-
tion in v/c, one obtains the Newtonian equation of motion and its generaliza-
tion to a higher accuracy [10–27].

Accordingly, one has

d 2xm

ds2 1 Gm
ab

dxa

ds
dxb

ds
5 0 (4)

We now find the lowest approximation of Eq. (4) in terms of t/t, where t is
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a characteristic cosmic time and t is the Hubble time, using the Einstein–
Infeld–Hoffmann method [11, 12].

To this end we change variables in Eq. (4) from s to v, where v is related
to the velocity-like coordinate x0 by x0 5 tv. A simple calculation gives

d 2xk

dv2 1 1Gk
ab 2

1
t

dxk

dv
G0

ab2 dxa

dv
dxb

dv
5 0 (5)

with k 5 1, 2, 3. One can neglect the second term in the parentheses since
it is one order smaller than the first, and thus

d 2xk

dv2 1 Gk
ab

dxa

dv
dxb

dv
' 0 (6)

The second term is equal to

Gk
00 1dx0

dv 2
2

1 2Gk
0b

dx0

dv
dxb

dv
1 Gk

ab
dxa

dv
dxb

dv
(7)

But x0 5 tv, thus the second and third terms may be neglected with respect
to the first, and we obtain

d 2xk

dv2 1 t2Gk
00 ' 0 (8)

The Christoffel symbol can be calculated also,

Gk
00 5

1
2

gkr(2­0 gr0 2 ­rg00) (9)

where primes are omitted for brevity. Again we have a x0-derivative ­0 5
t21 ­v which is of higher order in t/t, thus

Gk
00 ' 2

1
2

gkr­rg00 ' 2
1
2
gks­sg00 (10)

Since gks ' hks 5 2dks, we obtain

Gk
00 '

1
2

­g00

­xk (11)

and thus the geodesic equation yields

d 2xk

dv2 1
t2

2

­g00

­xk ' 0 (12)

Writing now g00 5 1 1 2f/t2, we then obtain
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d 2xk

dv2 5 2
­f
­xk (13)

for the equations of motion in the lowest approximation. It remains to find
the function f(x).

6. FIELD EQUATIONS

To find the function f, we have to solve the gravitational field equations.
The question arises: What field equations does the metric tensor g8mn satisfy?
We postulate that g8mn satisfies the Einstein field equations

Rmn 5 k1Tmn 2
1
2

gmnT2 (14)

where T 5 Trsgrs and

k 5
8pk
t4 (15)

with k 5 G(t2/c2). We then have

T 5 Tmngmn ' Tmnhmn ' T00h00 5 T00 (16)

Thus we obtain

R00 5 k 1T00 2
1
2
g00T2 '

1
2

kT00 5
1
2

kt2r(x) (17)

where r(x) is the mass density.
The approximate value of R00 is

R00 5
­Gr

00

­xr 2
­Gr

0r

­x 0 1 Gr
00Gs

rs 2 Gs
0rG

r
0s '

­Gr
00

­x r '
­Gs

00

­xs (18)

Using now Eq. (11) for the value of the Christoffel symbol, we obtain

R00 '
­Gs

00

­xs 5
1
2

­2g00

­xs­xs 5
1
2

¹2g00 '
1
t2 ¹2f (19)

where ¹2 is the ordinary Laplace operator.
Equations (17) and (19) then give

¹2f 5
1
2

kt4r (20)

or, using Eq. (15),
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¹2f(x) 5 4pkr(x) (21)

This equation is exactly the Newtonian equation for gravity but with k 5
Gt2/c2 replacing the Newtonian constant G.

7. INTEGRATION OF THE EQUATIONS OF MOTION

The integration of the equation of motion (13) is identical to that familiar
in classical Newtonian mechanics. But there is an essential difference which
should be emphasized.

In Newtonian equations of motion one deals with a path of motion in
the 3-space. In our theory we do not have that situation. Rather, the paths
here indicate locations of particles in the sense of the Hubble distribution,
which now takes a different physical meaning. With that in mind we proceed
as follows.

Equation (13) yields the first integral

1ds
dv2

2

5
kM
r

(22)

where v is the velocity of the particles, in analogy to the Newtonian

1ds
dt2

2

5
GM

r
(23)

In these equations s is the length parameter along the path of accumulation
of the particles.

Comparing Eqs. (22) and (23), and remembering that k 5 Gt2/c2, we
obtain

ds
dv

5
t
c

ds
dt

(24)

Thus

dv
dt

5
c
t

(25)

Accordingly, we see that the particle experiences an acceleration a0 5 c/t 5
cH0 directed outward when the motion is circular.

8. EFFECTIVE POTENTIAL

The motion of a particle in a central field is best described in terms of
an “effective potential” Veff. In Newtonian mechanics this is given by [28]
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Veff 5 2
GM

r
1

L2

2r 2 (26)

where L is the angular momentum per mass unit. In our case the effective
potential is

Veff (r) 5 2
GM

r
1

L2

2r 2 1 a0r (27)

The circular motion is obtained at the minimal value of (27), i.e.,

dVeff

dr
5

GM
r 2 2

L2

r 3 1 a0 5 0 (28)

with L 5 vcr, and vc is the rotational velocity. This gives

v2
c 5

GM
r

1 a0r (29)

Thus

v4
c 5 1GM

r 2
2

1 2GMa0 1 a2
0r 2 (30)

where a0 5 c/t 5 cH0.

9. CONCLUDING REMARKS

The first term on the right-hand side of Eq. (30) is purely Newtonian,
and cannot be avoided by any reasonable theory. The second one is the
Tully–Fisher term. The third term is extremely small at the range of distances
of stars around a galaxy.

It has been shown by Milgrom [3] that a term of the form GMa0 5
GMcH0 can explain most of the observations of the dynamics of stars around
the galaxies. The “modified Newtonian law of motion” proposed by him was
found by adding arbitrarily an attractive force term for very far distances.

In conclusion it appears that there is no necessity for the existence of
halo dark matter around galaxies. Rather, the results can be described in
terms of the properties of spacetime [29].
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